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Gutiérrez, Chis. 29050, Mexico.
Received November 14, 2016; Accepted April 19, 2017

Abstract
Currently, the demand on fossil fuels continues increasing even though its use causes several damage to the environment.
Biodiesel is a viable alternative to use of conventional diesel; however, biodiesel production is not always efficient and
requires to satisfy quality standards. Automatic control improves the quality and efficiency on the production processes.
Therefore, to improve productivity and ensure quality of the biodiesel production process in a batch reactor a predictive
control strategy was implemented. The control strategy was based in the mathematical model of the reactor. This model
describes the dynamics of the reaction and the energy during the production process. In the design of the control strategy,
the boiling point restrictions of methanol and the operating range of the actuator were taken into account. The results
shown that the products satisfied the requirement of ester content established in the norm EN 14214 and the reaction time
was reduced by 42.86%. In addition, a better performance and lower heating flow consumption, regarding to conventional
controller of type proportional integral, was shown by the predictive control system.
Keywords: biodiesel, transesterification, automatic control, model based predictive control.

Resumen
Actualmente, la demanda de combustibles derivados del petróleo sigue aumentando a pesar de que su uso causa graves
daños al medio ambiente. El biodiésel es una alternativa viable para el uso del diésel convencional, sin embargo su
producción no siempre es eficiente y requiere el cumplimiento de estándares de calidad. El control automático permite
mejorar la calidad y la eficiencia de los procesos de producción. Por lo tanto, se implementó una estrategia de control
predictivo al proceso de producción de biodiesel en un reactor discontinuo para mejorar la productividad y asegurar la
calidad. La estrategia de control se basa en el modelo matemático del reactor. Este modelo describe la dinámica de la
reacción y de la energı́a durante el proceso de producción. Durante el diseño de la estrategia de control se tomaron en
cuenta las restricciones del punto de ebullición del metanol y el rango de operación del actuador. Los resultados muestraron
que los productos cumplen con el requisito de contenido de éster establecido en la norma EN 14214 y que el tiempo de
reacción se reduce en 42.86%. Además, el control predictivo mostró un mejor desempeño y un menor consumo de flujo de
calentamiento, en comparación con controlador convencional tipo proporcional integral.
Palabras clave: biodiesel, transesterificación, control automático, control predictivo basado en modelo.
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1 Introduction
Nowadays, the world undergoes two great crises due
to fossil fuel depletion and environmental destruction.
The energetic crisis increases as world production
of conventional oil begins to reach its limit and
global demand of energy sources increase. From
2012 to 2013, oil global demand has increased 1.4%,
while the world oil production has increased just
by 0.6%. Because oil is a nonrenewable resource
and there is a dependence on it as an energy
source, it is the fossil energy source most likely
to be consumed (Demirbas, 2008). According to
the International Energy Study 2013 (Conti, 2013),
global energy consumption will increase from 524
quadrillion BTU in 2010 to 820 quadrillion BTU in
2040; in addition, most of the energy used in the
world still remains obtained from fossil fuels (almost
80% of the total predicted by 2040). Another alarming
fact is that more than 90% of transport depends on
fossil fuels. Additionally, excessive use of petroleum
fuels has caused an environmental crisis. Dependence
and excessive use of oil as an energy source has
caused major environmental damage that is becoming
irreversible. Gases produced by fossil-fuel combustion
are the main cause of the ”greenhouse effect”. Climate
change, thinning of the ozone layer and biodiversity
loss are among the most serious consequences of
excessive and disproportionate use of fossil fuels.

Along with the energy and environmental crisis,
oil exhaustion has caused an economic crisis because
its price increases as this energy source is being
depleted. Thus, it is also causing an increase in the
cost of its derivative products particularly fuels, such
as diesel and gasoline.

Nevertheless, biodiesel is an alternative to diesel
fuels (Katre et al., 2012). The effects of its combustion
do not cause major damage to environment because it
reduces carbon dioxide emissions in 78.5% compared
to diesel oil (Korotney, 2002). Biodiesel is a renewable
resource (Meher et al., 2006). Biodiesel advantage
are biodegradability, higher flash point, reduction of
exhaust emissions, miscibility with petrodiesel in all
ratios, compatibility with existing fuel distribution
infrastructure and inherent lubricity (Knothe and
Steidley, 2011). However, biodiesel production is not
always energetically and economically efficient. The
reactor is the most important unit to be controlled
in a biodiesel production plant because any variation
in the standard operating conditions could impact the
products (Ho et al., 2010). On the other hand, the
standard established for its use in diesel engines and

its commercialization have given rise to a greater
attention to the development of control systems for its
production process. Therefore, the automatic control
techniques applied to the production of biodiesel have
an important role in ensuring the quality of the product
and optimizing its production process.

For this reason, Benavides and Diwekar (2012a)
implemented a deterministic optimal control in a
batch reactor that improved the biodiesel production
by 1.47% and reduced the time production by 46%.
Also, Benavides and Diwekar (2012b) applied to the
same batch process a stochastic optimal control which
improved the production in 1.67% with reduction
of 43% in the production time. Likewise, Brásio
et al. (2013) designed and implemented a nonlinear
model predictive control for the production of
biodiesel in a industrial scale semi-batch reactor. This
automatic control system allowed to produce biofuel
according the norm EN 14214 and to energetically and
economically optimize the process.

Considering the foregoing, the design and
implementation of a predictive control based on a
model of batch reactor used in the biodiesel production
process via transesterification of soybean oil with
methanol is presented in this work. The main objective
was to improve reactor productivity process by
implementing a predictive control. The mathematical
model for the reactor used in this work describes
the dynamics of the reaction through mass balance
(Noureddini and Zhu, 1997), and the dynamics of
temperature from an energy balance (Kern and Shastri,
2015).

The predictive system controls the final
concentration of biodiesel, so that it reaches a constant
reference value, so it has a problem of regulation
control. This reference value is determined from the
simulation of the reaction at the optimum temperatures
described in the literature (50 °C). The control variable
is the heating water flow in the jacket.

In the literature it has been reported that a high
reaction temperature increases the rate of biodiesel
formation. But, the reactor temperature is limited
by the boiling points of the reaction components
(Noureddini and Zhu, 1997). Therefore, in the
predictive control design, this variable of state is
restricted. Moreover, the predictive control takes
account the restriction over the range of reactor
actuator. Finally, the performance of the predictive
control designed and implemented in this work was
compared with the performance of a conventional
control in terms of the error and the consumption of
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time and heating flow.

2 Mathematical model of
biodiesel transesterification
reactor

2.1 Modeling of the reaction

The most common biodiesel production method
at small and medium scales is the vegetable oil
transesterification reaction with alcohol (AL) in
a batch reactor. Transesterification (also called
alcoholysis) is the reaction of the triglycerides (TG)
contained in an animal fat or vegetable oil with an
alcohol to form esters (biodiesel) and glycerol (GL)
(Ma and Hanna, 1999). Oils are mainly composed of
triglycerides; generally, the 99% of refined soybean
oil is TG (Pryde, 1980). In this study, the assumption
is that oil consists of 100% of TG, and the terms oil
and TG are indistinctly used, as well as ester or metyl
ester and biodiesel. Also, during the transesterification
reaction intermediates such as monoglycerides (MG)
and diglycerides (DG) are formed (Kusdiana and
Saka, 2001). In Eq (1), general transesterification
reaction between methanol and TG from vegetable
oil and methanol (CH3OH) occurs. This shows that
three methyl ester (ME) molecules or biodiesel
(RCOOCH3) and one molecule of GL are produced
from the reaction of one molecule of TG with three
molecules of methanol.

Overall reaction (Noureddini and Zhu, 1997):

TG + 3CH3OH
Catalyst
� 3RiCOOCH3 + GL (1)

On the other hand, Eq (2)-(4) have three
simultaneous reversible reactions that describe the
step by step the overall reaction behavior, where k1−8
are rate constants. Transesterification is basically a
sequential and simultaneous reaction. TG are first
reduced to DG Eq (2). Then, DG are subsequently
reduced to MG Eq (3). Finally, MG are reduced to
fatty acid esters Eq (4) (Ma and Hanna, 1999).

Step by step reaction (Noureddini and Zhu, 1997):

TG + CH3OH
k1
⇔
k2

DG + R1COOCH3 (2)

DG + CH3OH
k3
⇔
k4

MG + R2COOCH3 (3)

MG + CH3OH
k5
⇔
k6

GL + R3COOCH3 (4)

From Eq (2)-(4), a system of differential equations
describing the instantaneous speed of the reaction can
be obtained. The general form of the governing set
of differential equations characterizing the stepwise
reactions involved in the TG transesterification are
presented in Eq (5) - (10) (Noureddini and Zhu, 1997):

dCTG

dt
= −k1CTGCAL + k2CDGCME (5)

dCDG

dt
= k1CTGCAL − k2CDGCME − k3CDGCAL

+k4CMGCME (6)
dCMG

dt
= k3CDGCAL − k4CMGCME − k5CMGCAL

+k6CGLCME (7)
dCME

dt
= k1CTGCAL − k2CDGCME + k3CDGCAL(8)

−k4CMGCME + k5CMGCAL − k6CGLCME
dCAL

dt
= −

dCME

dt
(9)

dCGL

dt
= k5CMGCAL − k6CGLCME (10)

where Ci is the concentration of i-th reaction
component (mol/L). Additionally, the reaction rate or
reaction kinetics, ki (1/s), is defined by the Arrhenius
expression (11):

ki(T ) = ai exp
(
−

Ei

RgTR

)
, with i = 1,2, ...,6(11)

where ai is the pre-exponential factor which defines
the frequency of collisions between molecules of the
reactants (1/s), Ei is the activation energy of each
component (J/mol), Rg is the universal constant for
ideal gases (J/K mol) and T is the reactor temperature
(K).

2.2 Modeling of the energy in the system

In this work a jacketed batch reactor which operates
at atmospheric pressure and with constant volume
is considered. The energy model used in this work
was obtained from Kern and Shastri (2015) and it is
presented in (12)-(13).
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dTR

dt
=

mR

VρCp

(
−V

dCME

dt
∆Hr + AU(T j −TR)

)
(12)

dT j

dt
=

1
m j

(
fhTh + fcTc − ( fh + fc)T j −

AU
cpw

(T j −TR)
)

(13)

Where TR is the reactor temperature, T j is the
jacket temperature, mR is the mass in reactor, V is the
reactor volume, cp is the heat capacity of the reactor
content, ρ is the density of the reactor content, ∆Hr
heat of reaction, A is the jacket contact surface, U is
the coefficient of heat transfer, m j is the mass of water
inside the reactor jacket , fc and fh are the mass flow
of hot and cold water in the jacket, respectively, and
cpw the specific heat capacity of water.

In this way, the complete model of the reactor is
given by the equations for the mass balances (5)-(10)
and the energy balances (12)-(13).

3 Predictive control of biodiesel
transesterification

Model based predictive control is an optimal control
strategy. The optimization criterion is a cost function
V(k) which is related with the future behavior of the
system. This behavior is predicted from a dynamic
model or prediction model. The future time interval
that is considered in prediction and optimization is
called horizon prediction (Hp) and the prediction
is performed starting from current time (k). The
predicted behavior depends on the input applied to
the system during the horizon prediction, û(k + i|k)
for i = 0,1, . . . ,Hp − 1 (Maciejowski, 2002). Thus
on the optimization problem the decision variable
is the input of the system. The basis of predictive
control is to determine the signal input that produce
the best predicted behavior to reach the desired state
(set point). A reference signal is used in that case
r(k + i|k), which is the trajectory along which the
system should reach to the set point signals at the end
of Hp (Maciejowski, 2002).

The completed application of the optimal input
signal generates a open loop control scheme. But

through the sliding horizon technique, the control
scheme becomes a close loop control system. The
sliding horizon technique consists in applying the first
element of the optimal input only for an instant. Then,
the system status is sampled and the optimization
problem is again solved. Thus, the horizon prediction
slides over the time.

Also, model-based predictive control uses a time
interval called as horizon control (Hu). This Hu
regards the future time point when the control signal
will be applied. The control horizon must not be
greater than the prediction horizon Hu (i.e. Hu ≤ Hp)
because the main idea is that the output signal reaches
the reference trajectory at the end of Hp.

3.1 Formulation of predictive control
problem

The mathematical model of the system considered
in this paper is a linear, discrete and time-invariant
model. Moreover, this model is in state space
form. Also, the assumption that the state vector is
measurable and, therefore x(k) = y(k)), is made and
there is no either perturbation or noise measuremente
considered in the system. Therefore, the form of the
prediction model used for predictive control in this
work is presented in Eq (14).

x(k + 1) = Ax(k) + Bu(k) (14)

where x ∈ Rn is the variables state vector, u ∈ Rp is the
variables input vector (control signal), A ∈ Rn×n is the
state matrix and B ∈ Rn×p is the input matrix. So, the
prediction which is defined in Eq (15) is obtained by
iteration of model Eq (14) (Maciejowski, 2002). Here
∆û(k + i|k) is the changes in the input vector and it is
defined as ∆û(k + i|k) = û(k + i|k) − û(k + i − 1|k) for
i = 0, . . . ,Hu − 1.
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x̂(k + 1|k)
...

x̂(k + Hu|k)
x̂(k + Hu + 1|k)

...
x̂(k + Hp|k)

︸                  ︷︷                  ︸
X(k)

=



A
...

AHu

AHu+1

...
AHp

︸      ︷︷      ︸
Ψ

x(k) +



B
...∑Hu−1

i=0 AiB∑Hu
i=0 AiB
...∑Hp−1

i=0 AiB

︸             ︷︷             ︸
Υ

u(k− 1) + . . .

· · ·+



B · · · 0
AB + B · · · 0

...
. . .

...∑Hu−1
i=0 AiB · · · B∑Hu
i=0 AiB · · · AB + B
...

...
...∑Hp−1

i=0 AiB · · ·
∑Hp−Hu

i=0 AiB

︸                                        ︷︷                                        ︸
Θ


∆û(k|k)

...
∆û(k + Hu − 1|k)

︸                    ︷︷                    ︸
∆U(k)

(15)

Predictive equation Eq (15) is used in a cost
function which is the form of Eq (16) to perform
the optimization implicated in the predictive control
algorithm. This optimization problem is based in the
minimization of the cost function.

V(k) =

Hp∑
i=Hw

‖ x̂(k+i|k)−r̂(k+i|k) ‖2Q(i) +

Hu−1∑
i=0

‖ ∆û(k+i|k) ‖2R(i)

(16)
where x̂(k + i|k) − r(k + i|k) is a measurement of
the error quantified during optimization. This error
represent the difference between the predicted state
and the reference signal. In addition Q(i) and R(i) are
weighting matrices that penalize both the error and
changes in the control signal. Also, Hw is the window
parameter, which is used when it is not necessary to
immediately start penalizing the error between x and r,
because there may be some delay between applying an
input and seeing any effect. In this case, the parameter
Hw is established so that Hw > 1.

Optimization of cost function Eq (16) consists
in error minimization which ensures that predictive
control uses a minimum for the error x̂(k+i|k)−r(k+i|k)
and changes in the control signal ∆û(k + i|k).

A characteristic for the predictive control that
makes it an attractive strategy for deal with the current
complex processes is the possibility to establish
constraints in the most important process variables.

There are three possible constraints in the applications
of predictive control. First, two types of constraints
deal with limitations in variables control u(k), and
the last type of constraint deals with limitations
in variables output y(k) or variables state x(k). So
constrains can be set in both, the movements and
amplitude signal control, ∆u(k + i|k) and u(k + i|k); as
well as the system output x(k + i|k). This constrains
have the forms Eq (17)-(19) respectively.

∆umin(k + i|k) ≤ ∆u(k + i|k) ≤ ∆umax(k + i|k)(17)
umin(k + i|k) ≤ u(k + i|k) ≤ umax(k + i|k) (18)
xmin(k + i|k) ≤ x(k + i|k) ≤ xmax(k + i|k) (19)

3.2 Solution of predictive control problem

The predictive control problem, which is an
optimization problem for cost function Eq. (16), is
defined in Eq (20).

min
∆û(k)

Hp∑
i=Hw

‖ x̂(k + i|k)− r̂(k + i|k) ‖2Q(i) +

Hu−1∑
i=0

‖ ∆û(k + i|k) ‖2R(i) (20)

The cost function Eq (16) can be rewritten as it is
shown bellow:

V(k) =‖ X(k)−T (k) ‖2
Q

+ ‖ ∆U(kk) ‖2
R

(21)
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with

T (k) =
[
r̂(k + Hw|k), . . . , r̂(k + Hp|k)

]T
(22)

Q(k) = diag
[
Q(Hw),Q(Hw + 1), . . . ,Q(Hp)

]
(23)

R(k) = diag [R(0),R(1), . . . ,R(Hu − 1)] (24)

Likewise, the predictive equation Eq (15) can be
rewritten as equation Eq. (25).

X(k) = Ψx(k) +Υu(k− 1) +Θ∆U(k) (25)

So replacing Eq (25) in Eq (21) and with some
algebraic operations the cost function Eq (21) can be
express as:

V(k) = E(k)TQE(k)− 2∆U(k)T
Θ

TQE(k)
+∆U(k)T [ΘTQΘ+R]∆U(k)

(26)

where E(k) = T (k)−Ψx(k)−Υu(k − 1). The new cost
function Eq (26) has the following form:

V(k) = constant−∆U(k)TG+∆U(k)TH∆U(k) (27)

with

G = 2ΘTQE(k) (28)
H = Θ

TQΘ+R (29)

Therefore, the original control problem presented
in Eq (20), which is expressed in term of cost function,
becomes the optimization problem defined in Eq (30).

min
∆û(k)
∆U(k)TH∆U(k)−GT

∆U(k) (30)

Thus, the predictive control problem without
constrains is solved when the solution for Eq (30) is
found.

Now, to establish the constrained control problem
is necessary to convert the original constrains Eq (17)-
(19) to inequalities in function of the variable decision
U(k). The process to transform this restriction is
presented in the literature (Maciejowski, 2002; Wang,
2009). After the transformation, new restrictions has
the form of Eq (31) (Maciejowski, 2002).

Ω∆U ≤ ω (31)

where Ω is a matrix and ω in a column vector. This
way, the predictive control problem with constrains
has the form of Eq (32), which is typical quadratic
programming problem.

min
∆û(k)
∆U(k)TH∆U(k)−GT

∆U(k) (32)

subject to

Ω∆U ≤ ω (33)

4 Results and discussion

4.1 Reaction conditions and model
parameters for simulation

The conditions for all simulations of the reaction
that occurs in the reactor correspond to the
transesterification of soybean oil with methanol in the
presence of an alkaline catalyst. This conditions were
obtained from literature and are presented in table 1
(Noureddini and Zhu, 1997). The parameters for the
Arrhenius expression (11), that were used in every
simulation of the reaction, are presented in table 2.
This parameters were calculated from real experiments
of the reaction at 50 °C (Noureddini and Zhu, 1997).
Additionally, the parameters values from the energy
model of the reactor (12)-(13) are shown in the table
1.

Table 1: Conditions for the transesterification reaction
(Noureddini and Zhu, 1997)

Condition Specification

Oil type Soybean, refined

Molar relation (AL:TG) 6:1 mol/l

Alcohol type Methanol

Reaction time 90 min

Catalyst Sodium hydroxide

Catalyst concentration 0.20 wt% oil
sodium hydroxide

Mix intensity 300 rpm

Table 2: Values for Ei and ai in the Arrhenius
equation (Noureddini and Zhu, 1997)

i Ei (mol/L) ai (min)−1

1 5.4999× 104 3.8805× 107

2 4.1555× 104 5.7328× 105

3 8.3094× 104 5.6035× 1012

4 6.1250× 104 9.7612× 109

5 2.6865× 104 5.3249× 103

6 3.9991× 104 2.0377× 104
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Table 3: Parameters of model energy (Fjerbaek et al.,
2009; Patzek, 2009; Luus and Okongwu, 1999;

Sorguven and Özilgen, 2010)

Parameter Value Units

∆Hr -18500 kJ/mol

∆U 450 kJ/(min K)

ρ 860 kg/m3

cp 1277 kJ/(mol K)

cpw 4.21 kJ/(mol K)

V 1 m3

mR 391.4 kg/mol

m j 99.69 kg

4.2 Simulation of the transesterification
reaction at constant temperature

Often, the transesterification reaction is carried out
at constant temperature. In the literature, it has
been reported that the optimum temperature for
transesterification reaction at atmospheric pressure is
between 50 °C and 60 °C (Leung et al., 2010).
However, there are reaction temperatures reported
from -32 °C (Ma and Hanna, 1999). For this reason,
a simulation of the reactor at different constant
temperatures was performed to analise the effect of
this variable on the conversion of triglicerydes into
metil ester (biodiesel). The simulations were carried
out from a temperature close to room temperature, that
is, from 30 °C in increments of 10 °C to 60 °C. The
effect of the temperature on the final state of reaction
was analyzed, through the calculation of the mass
percentage (%w/w). Assuming a perfect separation of
glycerol, catalyst and alcohol, the methyl ester mass
content was calculated from Eq (34) (Brásio et al.,
2013).

XME =
mME

mTG + mDG + mMG + mME
× 100%(34)

Figure 1 shows the evolution of mass content
(formation) of methyl ester at different temperatures.
As the temperature increases, the final mass percent
of biodiesel is increased also. This is due to the
high levels of energy in the reactant molecules during
the reaction at higher temperatures, which favor the
interaction between this molecules. Moreover, figure
1 show the effect of temperature on the reaction time.
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Fig. 1. Mass content of methyl ester at the different
temperatures for biodiesel production.

The time reaction is reduced at the higher
temperatures. This phenomena is due to the high
energy levels on reactants and that the high
temperature decrease the oil viscosities resulting in an
increased reaction rate and a shortened reaction time
(Benavides and Diwekar, 2012a). All of the above
suggests that the temperature of the reaction should
be as high as possible. However, this variable cannot
be higher than the boiling point. This variable cannot
be higher than the boiling point of methanol, which
is the reactant with the lowest boiling point (64.7
°C). The final mass fraction of biodiesel is higher
while the temperature is higher (see table 4). It can
be seen that on the change from 30 °C to 40 °C the
variation on XME was 1.0190%; while for the change
from 50 °C to 60 °C, the XME variation was 0.1558%;
i.e., the variation on XME was reduced more than 6
times. The limitation over the temperature reaction
was considered in the design of predictive control
system.

Table 4 shows the final mass percentages of
biodiesel at different temperatures. These results show
that the reaction products at 50 °C fulfill the norm
specification EN 14214 for ester content (assuming a
perfect separation of glycerol, catalyst and alcohol).
At this temperature, the final mass percentage of
metil ester was 96.71%, while the norm established
a minimum mass content for fatty acid metil ester
(without additives) of 96.5% (Brásio et al., 2013).
Therefore, the values of reaction products at 50 °C
were used as set point signal for the predictive control.

4.3 Control design

A model based predictive control (MPC)
strategy based on the linear model of biodiesel
transesterification batch reactor was developed and
implemented.
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Table 4: Final mass fraction in percentage of biodiesel
after the transesterification reaction at different

temperatures

T(°C) Percentage (%)

30 95.4356

40 96.4546

50 96.7173

60 96.9865

The objective of the control was to produce
biodiesel that complies the 96.5% specification set in
the norm EN 14214 for the ester content in the reaction
products.

The control variables most used in chemical
process are pressure, flow, level and temperature (e.g.
temperatures of flow rates of cooling water in the coil
or heating fluid in the jacket) (Benavides and Diwekar,
2012a). Since in this work a jacketed batch reactor
is used which operates an atmospheric pressure and
constant volume, the control variables are the heating
and cooling flows in the jacket of the reactor ( fh and fc,
respectively) and the temperatures of flows in the input
of the jacket (Th and Th, respectively). The heating
flow was selected as the manipulated variable. This
was done with the objective of evaluating the MPC
performance with a conventional proportional integral
(PI) controller, which allows to establish single control
loops for only one variable.

Because the MPC control scheme uses a linear
predictive model, the linearization of the nonlinear
model [equations (5)-(10) y (12)-(13)] was carried out
through the Taylor’s series method. Then, in order
to discretize the linear model obtained by the Taylor
series method, the zero-order hold technique was used.

The simulation of the reaction at different constant
temperatures shows that reaction products at 50 °C
fulfill the norm specifications (96.5 %) for mass
content of metil ester (see table 4). Thus, these
values of products were used as nominal operation
point. Likewise, the final mass content of metil ester
was established as constant set point in the controls
systems; therefore, there is a regulation-type control
problem to consider.

The sampling period was establish as Ts = 0.2
min, which was calculated from the sampling theorem
of Nyquist-Shannon. The predictive controller was
designed with HP = Hu = 5 (this is, 1 min). The
weighting parameters were set as Q(i) = 2.5× 105 and
R(i) = 1.5. All these parameters were tuned from trial
and error, and simulations of the control system in a

closed loop, with the objective to obtain a overshoot
and steady stay negligible error in the control response
(< 1%).

Because of the limitations on actuators of
the reactor and physicochemical properties of the
reactants, restrictions in the design of the MPC were
established. Heating and cooling flows in the jacket
vary in the range fh,c ∈ [0,120] kg/min (Kern and
Shastri, 2015). Therefore, in the MPC design the
variations range of manipulable variable was restricted
such that 0 ≤ fh ≤ 120 kg/min. The temperature of
the reactor should not exceed the boiling point of
methanol, which is the component with lower boiling
point. Therefore, a restriction on reactor temperature
(state variable) was set for a value a little lower of this
point (64.7 °C), such that TR ≤ 64 °C.

The optimization problem (32) involved in the
control problem, was solved using the quadratic
programming with method of “interior-point-convex”,
in MATLAB® software.

The PI controller was tuned using the Ziegler-
Nichols method. The tuning criteria for the PI were
the same as for predictive control (overshoot and
steady state error less than 1%). In this way, the
calculated gains for PI were P=0.1613 and I=1.6131.
To guarantee the restriction on fh, a PI with saturation
was implemented using as saturation limits 0 ≤
fh ≤ 120. However with PI it is not possible to
impose constraints on the reactor temperature, but with
the tuning obtained by the Ziegler-Nichols method
this temperature does not exceed the boiling point
limitation of methanol (see Fig. 5). Nevertheless, the
capacity to establish restrictions on state variables
(unlike conventional controllers), is one of the
advantages of predictive control.

4.4 Control implementation

The performance of the MPC was evaluated against
the performance of the PI and the performance of the
reaction at a constant temperature of 50 °C. Figure 2
presents the evolution of the methyl ester mass fraction
(in percentage) during the implementation of both
control schemes and the open loop simulation of the
reaction at constant temperature, as well as the 96.5%
of the value required by EN14214 for this property.
Both control systems reach the value required by the
norm faster than the constant temperature reaction.
The time to reach the required value was 24.8 minutes
for MPC, 26.2 minutes for PI, and 43.4 minutes for
the constant temperature reaction. This means that
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MPC achieved a production time reduction by 42.86%
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Fig. 2. Mass fraction in percentage obtained in
simulation of: predictive control (MPC), proportional
integral control (PI) and reaction at constant
temperature (ConsT); and the value for norm EN
14214.
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Fig. 3. Concentration of methyl ester (output
signal) during control implementation and signal
of reference for both controllers. MEMPC, output
signal for predictive control. MEPI, output signal for
proportional integral control. Ref, signal of reference
for both controllers.

compared to the constant temperature reaction, while
the PI control system improved this time in 39.63%.
That is, the predictive control decreased 3.23 %
more the time to reach the norm than the integral
proportional controller, with respect to the reaction
at constant temperature. A direct comparison between
both controllers shows that the MPC reduces the time
of the norm by 5.34 % in relation with the PI.
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Fig. 4. Reactor and jacket temperatures. TjMPC
and TrMPC, temperatures in the jacket and reactor
with MPC implementation, respectively; TjPI and
TrPI, temperatures in jacket and reactor with PI
implementation, respectively; Limit, constraint for
boiling point of methanol.

Figure 3 shows the output signals from the control
systems and the reference signal. Both signals follow
a similar trajectory to reach the reference value.
However, the predictive control reaches the reference
in a shorter time than the conventional control. Settling
time (2%) was lower for the predictive control (19.4
minutes), in relation to proportional integral control
(23.2 minutes).

Table 5 presents the ”Integral Absolute Error”
(IAE) obtained by the control systems during the
settling time. The predictive control model had an IAE
index of 75.62 mol/l, while PI had an IAE index of
77.25 mol/l. Thus, better performance was obtained
by the predictive control as compared to the traditional
controller.

Figure 4 shows the evolution of reactor and jacket
temperatures during the implementation of control
systems. The reactor temperature does not exceed the
limit of 64 °C. The maximum value reached for reactor
temperature by the MPC controller was 58.9 °C, while
the PI reached 56.7 °C. In both cases the reactor
temperature was below the limit value.

Table 5: Implementation result of control systems

Strategy
Time of Setting IAE Consumption of

norm (min) time (min) (mol/L) hot fluid (L)

MPC 24.8 19.4 75.62 6009.5
PI 26.2 23.2 77.25 6846.7
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systems during the operation of transesterification
reactor.

In figure 5 the control signals of both control
systems are presented. In both cases, the control signal
did not reach the limits for the heating flow ( fh ∈
[0,120]). It can be observed that the predictive control
signal is higher in relation to integral proportional
control, during the first 27 min. During this time, it
reaches a maximum value of 82 kg/min. After this
time, it decreases with rate of 0.495 kg/min in each
minute, until reaching the value of 46.18 kg / min. For
the other hand, the PI control signal increases until the
value of 77.29 kg/min during first 30 minutes. Then,
it slowly declines on average rate of 0.0335 kg/min
per minute, until reaching the value of 75.89 kg/min.
Taking into account the total simulation time (90 min),
the consumption of the heating flow by the MPC was
6009.5 liters of water. For its part,the proportional
integral control used 6846.7 liters. This represents
a greater consumption by the PI, which is 12.23 %
higher than the utility water consumption using the
MPC.

Conclusion

In this paper, a model based predictive control system
for biodiesel transesterification in a batch reactor was
implemented. The reaction was carried out from soy
oil and methanol. The complex dynamics present in
the biodiesel production reactor require a nonlinear
model of the system. The nonlinear model of the
system was formulated by the mass and energy
balances to the reactor. This model was linearized and
used as a predictive model in the predictive control
design. Also, the limitations present in the reactor,

which were established due to the boiling point of the
methanol and the range of actuator action, were taken
into account during the design of the control.

The performance of the predictive control system
was evaluated against a proportional integral controller
and the reaction operation at a constant temperature.
The predictive control system showed an improvement
in the production process in comparison to the
conventional controller, as it allowed producing
biodiesel according to specification of ester content,
established in the norm EN 14214 and with a
reduction of 42.86% in the production time, while
the PI based controlled has led to a reduction
of 39.63%. Additionally, the proportional integral
controller signal showed a higher energy consumption.
This controller shown a higher consumption of the
heating flow by 12.23% compared to the MPC.

In this way, the predictive control proved to
improve the productivity of the biodiesel production
process by reducing production time and satisfying the
ester content specification of EN 14214. In addition,
MPC controller performs this task in a better way and
with a better performance compared to conventional
controller, because the implementation result analysis
showed that the MPC achieves a lower IAE index and
consumption of hot fluid (1.63 mol · L−1 and 837.2 L,
respectively).
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